Thursday, October 2, 2014

Gravity Gradients Frame Oceanus Procellarum


Topography of Earth's moon generated from data collected by the Lunar Orbiter Laser Altimeter, aboard NASA's Lunar Reconnaissance Orbiter, with the gravity anomalies bordering the Procellarum region superimposed in blue. The border structures are shown using gravity gradients calculated with data from NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission. These gravity anomalies are interpreted as ancient lava-flooded rift zones buried beneath the volcanic plains (or maria) on the nearside of the Moon.

Launched as GRAIL A and GRAIL B in September 2011, the probes, renamed Ebb and Flow, operated in a nearly circular orbit near the poles of the moon at an altitude of about 34 miles (55 kilometers) until their mission ended in December 2012. The distance between the twin probes changed slightly as they flew over areas of greater and lesser gravity caused by visible features, such as mountains and craters, and by masses hidden beneath the lunar surface.

The twin spacecraft flew in a nearly circular orbit until the end of the mission on December 17, 2012, when the probes intentionally were sent into the moon's surface. NASA later named the impact site in honor of late astronaut Sally K. Ride, who was America's first woman in space and a member of the GRAIL mission team.

GRAIL's prime and extended science missions generated the highest-resolution gravity field map of any celestial body. The map will provide a better understanding of how Earth and other rocky planets in the solar system formed and evolved.

Image credit: NASA/Colorado School of Mines/MIT/GSFC/Scientific Visualization Studio

Note: For more information, see PIA18821: On the West Coast of the Ocean of Storms (Artist's Concept) and NASA Mission Points to Origin of 'Ocean of Storms' on Earth's Moon.

Sunday, April 20, 2014

Apollo 12 and Surveyor 3


On April 17, 1967, NASA's Surveyor 3 spacecraft launched from Cape Canaveral Air Force Station, Florida, on a mission to the lunar surface. A little more than two years after it landed on the moon with the goal of paving the way for a future human mission, the Surveyor 3 spacecraft got a visit from Apollo 12 Commander Charles Conrad Jr. and astronaut Alan L. Bean, who snapped this photo on November 20, 1969.

After Surveyor 1's initial studies of the lunar surface in 1966, Surveyor 3 made further inroads into preparations for human missions to the moon. Using a surface sampler to study the lunar soil, Surveyor 3 conducted experiments to see how the lunar surface would fare against the weight of an Apollo lunar module. The moon lander, which was the second of the Surveyor series to make a soft landing on the moon, also gathered information on the lunar soil's radar reflectivity and thermal properties in addition to transmitting more than 6,000 photographs of its surroundings.

The Apollo 12 Lunar Module, visible in the background at right, landed about 600 feet from Surveyor 3 in the Ocean of Storms. The television camera and several other pieces were taken from Surveyor 3 and brought back to Earth for scientific examination. Here, Conrad examines the Surveyor's TV camera prior to detaching it. Astronaut Richard F. Gordon Jr. remained with the Apollo 12 Command and Service Modules (CSM) in lunar orbit while Conrad and Bean descended in the LM to explore the moon.

Photo credit: NASA

Wednesday, March 19, 2014

Lunar North Pole Map


Scientists, using cameras aboard NASA's Lunar Reconnaissance Orbiter (LRO), have created the largest high resolution mosaic of our moon's north polar region. The six-and-a-half feet (two-meters)-per-pixel images cover an area equal to more than one-quarter of the United States.

The images making up the mosaic were taken by the two LRO Narrow Angle Cameras, which are part of the instrument suite known as the Lunar Reconnaissance Orbiter Camera (LROC). The cameras can record a tremendous dynamic range of lit and shadowed areas.

Web viewers can zoom in and out, and pan around an area. Constructed from 10,581 pictures, the mosaic provides enough detail to see textures and subtle shading of the lunar terrain. Consistent lighting throughout the images makes it easy to compare different regions.

To view the image with zoom and pan capability, visit http://lroc.sese.asu.edu/gigapan.

Image credit: NASA/GSFC/Arizona State University